The South Atlantic Convergence Zone and the paradigm of SST-driven climate variations

Paulo Nobre

National Institute for Space Research – INPE

Center for Weather Forecasting and Climate Studies – CPTEC Earth System Science Center – CCST

> WCRP – JSC-34 Meeting Brasilia, 29 May 2013

TAV in review

Damped Equatorial mode, e.g. Atlantic Niño:

Zebiak (1993) Chang et al (2000) Nobre et al (2003)

Thermally direct meridional mode, e.g. ITCZ:

Moura and Shukla (1981) Nobre and Shukla (1996) Giannini et al (2001)

Thermally indirect, e.g. SACZ: Robertson and Mechoso (2000) Chaves and Nobre (2004) De Almeida et al (2007) Nobre et al (2012)

(Nobre, Zebiak & Kirtman, 2003)

(Robertson and Mechoso, 2000)

Continental convection and Cupled O-A Model bias

SACZ: Continental Rainfall & Cold SST Atmospheric forcing of underlying SST?

- Kodama et al (1992)
 - Description
- Figueroa et al (1995), Kodama et al (2012)
 - Continental rainfall
- Robertson and Mechoso (2000)
 - Summer monsoon
- Robertson et al (2003), Barreiro et al (2002, 2005)
 - AGCM simulations
- Chaves and Nobre (2004)
 - SST-Cloud-SWR feedback
- Nobre et al (2005)
 - First CGCM evidences neg. feedback
- De Almeida et al (2007)
 - Stochastic SST-SWR negative feedback
- Nobre et al (2012)
 - Fully coupled GCM thermally indirect cell: increased rain, ascending motion over cooler waters

Courtesy: R.A.F. Almeida (2007)

Figueroa et al. (1995)

SST driven SACZ Experiment: forced AGCM

The SACZ 2-tier Quest

CPTEC AGCM, 50 years, 10 Member Ensemble, Kuo, T062L28, Obs SST

Marengo et al. (2002)

Coupled Ocean-Atmosphere processes at play DJF Precipitation Forecasts anomaly correlations

Ensembles Coupled Forecasts SST-Rainfall Anomaly Correlations

IFS/HOPE

ECHAM5/OPA8.2

DePreSys

SACZ Signature Increased Rainfall over Cold Waters

ACC (SST, precipitation)

OBSERVATIONS

observations

CGCM

 $\mathsf{AGCM} \, \leftarrow \, \mathsf{OISST}$

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{CGCM} \ \mathsf{SST}$

AGCM, Obs SST

AGCM, BESM SST

BESM-OA2.3

SACZ Signature:

Ascending motion over cold water

ACC (SST, w500)

OBSERVATIONS

observations

CGCM

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{OISST}$

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{CGCM} \ \mathsf{SST}$

AGCM, Obs SST

AGCM, BESM SST

BESM-OA2.3

Increased downward SW radiation over cold water

ACC (SST, downward SW radiation)

observations

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{OISST}$

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{CGCM} \ \mathsf{SST}$

AGCM, Obs SST

0.7 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.7

AGCM, BESM SST

OBSERVATIONS

BESM-OA2.3

CGCM

2-tier x 1-tier Rainfall Predictability

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{OISST}$

Precipitation skill

 $\mathsf{AGCM} \ \leftarrow \ \mathsf{CGCM} \ \mathsf{SST}$

 $\mathsf{CGCM}-(\mathsf{AGCM}\,\leftarrow\,\mathsf{OISST})$

BESM-OA2.3

CGCM

AGCM, BESM SST

0.4

0.2

0.0

-0.2

-0.4

Nobre et al. (2012)

CGCM-AGCM

Next Steps...

- Development of the Brazilian Earth System Model
 - CPTEC AGCM
 - GFDL MOM4p1 OGCM, ISI, TOPAZ & FMS coupler
 - CCST INLAND Surface model (based on NCAR IBIS)
 - MPI/NCAR HAMMOZ Aerosol-Chemistry model
- Bettering the representation of tropical rainfall, srfc processes, river discharge on the Atlantic Ocean, and its effects on global climate:
 - Contributing to solve Atlantic SST bias, ITCZ and SACZ variability and change issues.

BESM AMAZON RAINFALL REPRESENTATION

BESM 2.3.1

BESM UPPER LEVEL FLOW REPRESENTATION

BESM 2.3.1 Divergencia do Vento a 200hPa (10e-6 s-1) : 2005-2008 CGCM NCCS ENSME

Concluding Remarks

- Hydrostatic, thermally driven circulation (ascending motion over warm waters), does not explain SACZ formation.
- Coupled ocean-atmosphere interactions are fundamental to explain SACZ formation and variability.
- Improved representation of continental diabatic heat source is needed to predict SACZ formation.
- Work's being done in Brazil, with international cooperation, to develop BESM to a fully interactive ESM.